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Abstract

The excessive lateral sway motion caused by crowds walking across footbridges has attracted great public attention in

the past few years. Three possible mechanisms responsible for such lateral vibrations have been investigated in the

literature: direct resonance, dynamic interaction, and internal resonance. In this paper, starting from a critical review of the

mechanisms proposed in the literature, a parametric excitation mechanism is analyzed, based on a forcing model whose

amplitude is a function of deck oscillations. A stability criterion is identified, depending on the ratio between the structural

and excitation frequencies, on the ratio of the structural and pedestrian masses, and on the structural damping. The

proposed mechanism can be achieved for very flexible footbridges, with a lateral natural frequency around 0.5Hz,

corresponding to a half of the lateral walking frequency. This situation can occur in modern structures, such as in the case

of the London Millennium Footbridge.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The improved mechanical characteristics of materials, the development of new technologies, the evolution
of numerical techniques, or simply aesthetic purposes have enabled engineers to design lighter and more
slender footbridges [1]. Pedestrians walking on a footbridge exert a dynamic loading with dominant frequency
components around 2Hz in the vertical direction, and around 1Hz in the lateral direction: footbridges with
natural frequencies close to those values are considered as prone to human-induced vibrations. Grundmann
et al. [2] observed that pedestrians are forced to adjust their step length and speed to some extent to the motion
of other pedestrians if footbridges are exposed to large pedestrian traffic: this mechanism can be defined as
synchronization among pedestrians and it is independent of the footbridge dynamic characteristics. In the case
of footbridges with a lateral natural frequency close to the walking frequency, a further synchronization can
be achieved between the motion of the footbridge and pedestrians (e.g. Fujino et al. [3]).

The excessive lateral sway motion caused by crowds walking across footbridges has attracted great
public attention in the past few years. Three examples of excessive lateral vibrations can be found in recent
literature: a cable-stayed pedestrian bridge in Japan, known as the T-bridge, described by Fujino et al. [3], the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b coefficients for the general solution of y0
C damping operator
Dj dynamic amplification factor for single-

degree-of-freedom systems in the model
by Roberts [10]

fp force per unit length exerted by pedes-
trians

Fj jth modal force
g gravity acceleration
G function to describe how much pedes-

trians synchronize with the bridge’s
natural frequency in the model by
Nakamura [8]

k proportionality constant in the model by
Dallard et al [4]

k1 dynamic loading factor (a) in the model
by Nakamura [8]

k2 percentage of synchronized pedestrians
(l) in the model by Nakamura [8]

k3 constant to be derived from experimental
tests in the model by Nakamura [8]

L bridge span length
L stiffness operator
mp pedestrian mass distribution
ms structural mass distribution
mr mass ratio in the model by Newland

[9]
mps mass of a single pedestrian
Mpj

jth pedestrian modal mass
Msj

jth structural modal mass
Np number of pedestrians
N̄ number of structural modes to be ac-

counted for in the principal transforma-
tion

pk kth structural principal coordinate
ppsj

jth modal displacement of the pedestrian
centre of mass on a stationary pavement
in the model by Newland [9]

q bridge lateral displacement

qp pedestrians’ lateral displacement in the
model by Roberts [10]

qps displacement of the pedestrian centre of
mass on a stationary pavement in the
model by Newland [9]

~t non-dimensional time
vps maximum amplitude of lateral pedestrian

motion in the model by Roberts [10]
x abscissa along the bridge deck
y non-dimensional bridge displacement
yi coefficients of the series expansion of y

(i ¼ 0, 1, 2)
a dynamic loading factor
a0 dynamic loading factor on a stationary

platform
a1 dynamic loading factor related to the

platform motion
acm ratio between the motion amplitude of

pedestrian centre of mass and that of the
pavement in the model by Newland [9]

b Portion of the span where pedestrians are
uniformly distributed in the model by
Roberts [10]

d non-dimensional coefficient depending
on the frequency ratio

di coefficients of the series expansion of d
(i ¼ 0, 1, 2)

D time-lag between the motion of pedes-
trian centre of mass and that of the
pavement

e naturally small parameter
elim limit value of e defining the transition

curve
Z non-dimensional damping
k non-dimensional force amplitude
l percentage of synchronized pedestrians
xj jth structural modal damping ratio
jk kth structural mode of vibration
O circular frequency of the lateral force

exerted by walking pedestrians
oj jth natural circular frequency
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well-known Millennium Footbridge in London, described by Dallard et al. [4,5], and the Solferino Footbridge
in Paris, described by Danbon and Grillaud [6]. Other, less documented examples of footbridge lateral
vibrations are reported in Refs. [4,7].

The mechanisms investigated in the literature to explain such lateral vibrations can be classified into three
classes: direct resonance, activated if the pedestrian excitation is in resonance with a mode of vibration of the
bridge [3]; dynamic interaction, based on suitable models of the interaction between the motion of the bridge
and the motion of pedestrians walking on it [4,5,8–12]; and internal resonance, due to structural nonlinearities
giving rise to internal resonance conditions among different natural modes of vibration of the bridge itself [7,13].
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Direct resonance [3] can be achieved if the footbridge has a lateral mode of vibration with a natural
frequency within the range of the lateral walking frequency (0.8–1.2Hz); based on this mechanism, the
footbridge response in the lateral direction is harmonic, driven by the resonant walking frequency.

Dynamic interaction mechanisms have received great attention in the literature, allowing introduction of the
concept of the limit number of pedestrians which could cause serviceability problems for footbridges. Based
on experimental tests carried out on the London Millennium Footbridge, Dallard et al. [4,5] proposed a model
of the force exerted by pedestrians on the bridge, which is proportional to the bridge velocity and permits
definition of a critical condition when the total damping is zero, corresponding to a maximum number of
pedestrians; however, a constant appears in the model which has been estimated by back analysis of the data
recorded on the Millennium Bridge and cannot be easily generalized to other structural examples. Nakamura
[8] proposed an analogous model for the interactive force, which allows schematization of the self-limiting
nature of the synchronization phenomenon; however, this model is also based on coefficients which have been
estimated from experimental tests and cannot easily be predicted at the design stage. A different model has
been proposed by Roberts [10–12], schematizing the interaction between the pedestrians and the footbridge:
assuming that synchronization occurs when the displacement of the bridge is greater than the displacement of
the pedestrians, a limit number of pedestrians is obtained. Since the interactive force is harmonically varying
with frequency of about 1Hz, such a model can motivate large vibrations only for footbridges with a natural
frequency close to that value (i.e. direct resonance conditions). Newland [9] proposed a forcing model as the
sum of the forces exerted by pedestrians on a stationary pavement and the inertia forces acting on the
pedestrians themselves, assuming that they move with the same law of motion as the floor but in phase delay.
In this way, he found a limit condition in which the system becomes unstable. However, assuming that the
motion of pedestrians has the same harmonic components as the deck motion, this model can be rightly
applied only if the vibration lateral mode of the footbridge has a natural frequency close to the lateral walking
frequency (i.e. direct resonance conditions).

Internal resonance [7,13] is possible if the bridge is characterized by a 2:1 ratio between vertical and lateral
mode frequencies, with the vertically excited mode close to direct resonance conditions concerning the loading
(i.e. with a natural frequency close to 2Hz).

Some experimental tests have been carried out in order to understand the lateral pedestrian-induced
excitation mechanism [3,4,6]. From the analysis of the time histories recorded during the tests performed on
the T-Bridge in Japan, characterized by vertical frequencies 0.7, 1.4 and 2Hz and a lateral frequency 0.9Hz,
Fujino et al. [3] observed a correlation between the lateral displacements and the lateral forces, while no
correlation was observed between the lateral and vertical displacements: they concluded that, even if the
internal resonance could be achieved for that bridge, its lateral vibrations could be due only to a direct
resonance phenomenon; moreover, the great displacements recorded in the lateral direction could be reached
only if synchronization occurred among pedestrians. The tests carried out on the London Millennium Bridge
by Dallard et al. [4], characterized by vertical frequencies 1.15, 1.54, and 1.89Hz and lateral frequencies 0.48
and 0.95Hz, showed that the lateral vibrations had frequency components also corresponding to the first
lateral mode (0.48Hz); tests performed with an increasing number of pedestrians demonstrated that the
vibration amplitude dramatically increases when a critical number of pedestrians is reached. The models
proposed in the literature [3,4,8–12] may motivate the excitation of the mode at 0.48Hz only assuming that
people were instinctively changing direction slightly every 3–4 footfalls. However, the models based on an
interactive force harmonically varying with frequency around 1Hz [3,9–12] cannot reproduce the increasing
trend of oscillatory divergent response, as experimentally observed [5]. Danbon and Grillaud [6] carried out
analogous tests on the Solferino footbridge, characterized by a lateral swaying frequency of 0.7Hz, and
concluded that lateral excitation was possible only if the crowd walked very slowly so that the frequency of the
force is resonant with the first lateral mode of vibration of the footbridge.

In this paper, starting from an extensive, critical analysis of the excitation mechanisms studied in the
literature (Section 2), a new forcing model is proposed based on experimental tests carried out on moving
platforms [4]; in this way, the force exerted by pedestrians on the moving bridge is modelled as harmonic with
an amplitude depending on the bridge displacement (Section 3). Thus, the equation of motion of the
footbridge results as a parametrically excited system of the Mathieu type [14,15], leading to unstable
oscillations if the frequency of the lateral crowd-induced excitation is close to twice the lateral frequency of the
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footbridge. The treatment of the equation of motion through the method of strained parameters allows
definition of the transition curves, which divide the stable regions from the unstable ones. The analyzed
mechanism could be critical for very flexible footbridges, with horizontal frequencies around a half of the first
lateral walking frequency, as in the case of the London Millennium Bridge. A simple criterion defining the
limit pedestrian mass is introduced and is compared with analogous formulae available in the literature
(Section 4). The proposed model is then applied for the analysis of the pedestrian-induced vibrations of the
London Millennium Footbridge (Section 5). Finally, some conclusions are drawn in Section 6.

2. Crowd-induced forces and excitation mechanisms: critical review of the literature

In this section, the force models proposed in the literature for the crowd-induced actions on footbridges are
revised (Section 2.1); based on these different forcing models, the possible excitation mechanisms identified in
the literature are critically analyzed (Section 2.2).

2.1. Force models

If a light stream of pedestrians is considered, people can move freely and their walking phases are randomly
distributed: in this case, the resultant intensity of human-induced forces is low. According to Matsumoto et al.
[16], the force per unit length fp(x, t) exerted by Np pedestrians can be expressed as

f pðx; tÞ ¼

ffiffiffiffiffiffi
Np

p
agmps

L
cosðOtÞ (1)

where mps is the mass of a single pedestrian, L is the footbridge span length, a the so-called ‘‘dynamic loading
factor’’ and depends on the considered load harmonic and on the load direction [17], g is the gravity
acceleration, O the dominant walking frequency, which is a function of the walking speed and is commonly
assumed around 2Hz in the vertical direction and around 1Hz in the horizontal direction. An analogous
model is proposed by Roberts [10], who expressed the force fp(x, t) as

f pðx; tÞ ¼

ffiffiffiffiffiffiffiffiffi
2Np

p
mpsvpsO2

L
cosðOtÞ, (2)

vps being the maximum amplitude of pedestrian lateral motion (vpsffi0.025m).
If footbridges are exposed to heavy pedestrian traffic (crowd density of the order 0.6–1 pedestrian/m2), free

unconstrained movements are practically impossible and pedestrians are forced to adjust their step length and
speed to some extent to the motion of other pedestrians [2]: in such a case, the forces induced by the crowd can
be expressed by the following equation (Fig. 1):

f pðx; tÞ ¼ lagmpðxÞcosðOtÞ, (3)

where l is the percentage of synchronized pedestrians (l ¼ 0.2 from the tests carried out by Fujino et al. [3] on
the T-Bridge), mp(x) is the distribution of the pedestrian mass walking with frequency O along the bridge,
commonly assumed as uniform in crowded conditions:

mpðxÞ ¼
Npmps

L
. (4)
xx
q (x, t)

fp (x, t)

Fig. 1. Schematic representation of a bridge deck.
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Such a force model is based on experimental measurements carried out on stationary platforms. In case of
great lateral oscillations of the footbridge, this model might not be appropriate, since the motion of the centre
of mass of pedestrians, and thus the force exerted on the pavement, will depend on the motion of the pavement
itself. Experimental measurements involving pedestrians walking on a moving platform have shown that the
dynamic force exerted by pedestrians is a function of the deck motion amplitude (Fig. 2, [4]). Starting from the
results of experiments carried out at Imperial College, the dynamic loading factor a can be approximately
expressed as a function of the deck motion amplitude q(t) as follows:

a ¼ a0 þ a1qðtÞ, (5)

where a0 is the dynamic loading factor on a stationary platform (a0 ¼ 0.04), and a1 can be estimated from the
data shown in the Fig. 2 (a1ffi2m�1). It should be noted that Fig. 2 has been obtained from tests performed on
a harmonically moving platform with pedestrians walking with the same frequency as the platform.

Based on the measurements carried out on the Millennium Bridge, Dallard et al. [4] proposed a different
model for the lateral force exerted by pedestrians on footbridges, in which the forces are proportional to the
bridge velocity:

f pðx; tÞ ¼ k
Np

L
_qðx; tÞ, (6)

where k is a proportionality constant, which has been estimated from a back analysis of data recorded on the
Millennium bridge (k ¼ 300Ns/m).

An alternative model, proposed by Newland [9], expresses the forces induced by pedestrians as the sum of
forces exerted by pedestrians on a stationary pavement and of forces due to the motion of the pavement,
assuming that the centre of mass of pedestrians moves with the same law of motion as the floor, having a
suitable phase delay:

f pðx; tÞ ¼ �lmpðxÞ €qpsðx; tÞ � lacmmpðxÞ €qðx; t� DÞ, (7)

where qps(x, t) is the displacement of the centre of mass of pedestrians on a stationary pavement and q(x, t) is
the displacement of the pavement, D is the time-lag between the motion of pedestrian centre of mass and that
of the pavement, and acm the ratio between the motion amplitude of pedestrian centre of mass and that of the
pavement (acm can approximately be taken equal to 2

3
). It should be noted that, even if the contribution is
0
0

0.04

0.08

0.12

α

0.01

q (m)

0.02 0.03

Platform frequency
0.75 Hz
0.95 Hz
static

Fig. 2. Dynamic loading factor for harmonically moving platform with different frequencies [4] (, n ¼ 0.75Hz, J n ¼ 0.95Hz, and

& static).
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twofold in Eq. (7), it is doubtful whether such a model can be applied when pedestrian and bridge motions
have different harmonic contents.

2.2. Excitation mechanisms

The excitation mechanisms analyzed in the literature in order to explain the excessive lateral sway motion
induced by a crowd crossing a footbridge can mainly be classified into three classes: direct resonance [3],
dynamic interaction between the footbridge and the crowd [4,8–12], and internal resonance [7,13].

In order to deal with the direct resonance and the dynamic interaction mechanisms, let us consider the
equation of motion of a footbridge, modelled as a linear mono-dimensional damped dynamical system (Fig. 1):

msðxÞ
q2qðx; tÞ

q2t
þ C

qqðx; tÞ

qt

� �
þL½qðx; tÞ� ¼ f pðx; tÞ, (8)

where ms(x) is the structural mass, C the damping operator, L the stiffness operator, and fp(x, t) the crowd-
induced force. Eq. (8) is usually solved applying the principal transformation:

qðx; tÞ ¼
XN̄

k¼1

jkðxÞpkðtÞ, (9)

where jk(x) is the kth mode of vibration, pk(t) the corresponding principal coordinate and N̄ a suitable subset of
the structural modes. Substituting Eq. (9) into Eq. (8), under the hypothesis of classical damping, the equation of
motion of the jth principal coordinate is expressed as

€pjðtÞ þ 2xjoj _pjðtÞ þ o2
j pjðtÞ ¼

1

Msj

FjðtÞ, (10)

where xj is the jth modal damping ratio, oj the jth natural circular frequency, Msj
the jth modal mass, and Fj(t)

the jth modal force:

FjðtÞ ¼

Z L

0

f pðx; tÞjjðxÞdx. (11)

2.2.1. Direct resonance

The simplest excitation mechanism able to motivate the crowd-induced excessive lateral sway motion is
direct resonance, in which a part of the crowd crossing the footbridge moves with a frequency equal to one of
the lateral frequencies of the bridge [3]. This mechanism can be achieved only if the footbridge has a lateral
frequency around 1Hz, which is the dominant frequency exerted by pedestrians in the lateral direction.

Substituting Eq. (3) with O ¼ oj into Eq. (11), the modal force is obtained; the structural response is then
given by

qðx; tÞ ¼
lag

Msj
o2

j

1

2xj

jjðxÞ

Z L

0

mpðxÞjjðxÞdx

� �
cos oj t�

p
2

� �
. (12)

Fujino et al. [3] have adopted this model for the lateral vibration of the T-Bridge. Theoretical displacements
corresponding to measurements have been found assuming that 20% of pedestrians are synchronized with the
natural frequency of the footbridge (l ¼ 0.2). This mechanism cannot motivate great amplitude oscillations
for structures with natural frequencies in the lateral direction far away from 1Hz. Dealing with structures with
a lateral frequency around 1Hz corresponding to a skew-symmetric vibration mode, such a model can
motivate large oscillations only assuming that the pedestrian mass is not uniformly distributed (otherwise the
integral in Eq. (12) is nil).

2.2.2. Dynamic interaction

Four different models based on dynamic interaction between pedestrians and the footbridge have been
proposed in the literature: Dallard et al. [4] and Nakamura [8] based their models on interaction forces
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proportional to the bridge velocity; Roberts [11] proposed a model characterized by the joint solution of the
equations of motion of the bridge and the pedestrians, identifying a critical condition when the pedestrian
motion is larger than the bridge motion; Newland [9] proposed a model of interaction forces based on the
superimposition of forces on a stationary pavement and forces due to the pavement motion.

Dallard et al. [4] adopted a pedestrian forcing model given by Eq. (6). Assuming that the bridge response is
dominated by the jth mode of vibration, with a modal force obtained substituting Eq. (6) into Eq. (11), the
equation of motion of the jth principal component can be expressed as follows:

€pjðtÞ þ 2xjoj �
1

Msj

k
Np

L

Z L

0

j2
j ðxÞdx

" #
_pjðtÞ þ o2

j pjðtÞ ¼ 0. (13)

The force transmitted by pedestrians is then modelled as a source of negative damping for the structure,
and the jth principal coordinate becomes unstable if the total damping becomes negative; the stability criterion
is then

xj4
kNp

R L

0 j2
j ðxÞdx

2MjojL
. (14)

Assuming a uniform distribution of pedestrian mass in Eq. (4), Eq. (14) can be written as follows:

Mpj

Msj

o2xjoj

mps

k
, (15)

where Mpj
is the jth pedestrian modal mass given by

Mpj
¼

Z L

0

mpðxÞj2
j ðxÞdx. (16)

Nakamura [8] proposed a refined forcing model analogous to the previous one, representing the self-limiting
nature of the pedestrian synchronization. The modal force is expressed as follows:

F jðtÞ ¼ k1k2

_pjðtÞ

k3 þ j _pjðtÞj
GðnjÞMpj

g, (17)

where k1 is the dynamic loading factor (a0 in Eq. (5)) (k1 ¼ 0.04), k2 is the percentage of synchronized
pedestrians (l in Eq. (4)) (k2 ¼ 0.2), k3 is a constant that has to be derived from experiments so that it
corresponds to the measured data (k3 ¼ 0.001 for the London Millennium Footbridge), G(nj) is a function able
to describe how much pedestrians synchronize with the bridge’s natural frequency (G(nj) ¼ 1 in absence of
experimental data), and Mpj

is the pedestrians’ modal mass (Eq. (16)).
The model proposed by Roberts [10,11] is based on the joint solution of the motion equations of the

footbridge (10) and of pedestrians, this latter being expressed as follows:

mpðxÞ €qpðx; tÞ ¼ �f pðx; tÞ, (18)

where qp(x, t) represents the pedestrians’ lateral displacement. The critical condition is defined when the
motion of pedestrians is larger than the motion of the bridge, the stability condition is then:

Mpj

Msj

o
oj

O

� �2 1

Dj

, (19)

Dj being the dynamic amplification factor for single-degree-of-freedom systems:

Dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

½1� ðO=ojÞ
2
�2 þ ð2xjðO=ojÞÞ

2

s
. (20)

Considering the situation in which pedestrians are uniformly distributed over a portion of length
bL (in one continuous or several discrete lengths) and sinusoidal mode shapes, the ratio Mpj

=Msj
can be
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expressed as [11]

Mpj

Msj

¼
2

1þ b2
Npmps

Lms

. (21)

In order to take into account the fact that it is virtually impossible for a large group of pedestrians to
maintain a precise walking frequency over an extended period of time, Roberts [10] recommends that Eq. (19)
should be used in conjunction with an average value of the dynamic amplification factor Dj for a frequency
ratio O/oj in the range 0.8–1.2. In addition, Roberts [12] analyses separately the cases of random and of
partially synchronized pedestrian loading, taking into account the possible variation of parameters which can
influence the stability condition; the pedestrian lateral force amplitude and the probability of synchronization
of pedestrian motion with the motion of the bridge prove to affect the pedestrian limit number.

Newland [9] adopted the forcing model described by Eq. (7). Assuming that the bridge response is
dominated by the jth mode of vibration and obtaining the modal force substituting Eq. (7) into Eq. (11), the
equation of motion of the jth principal component can be expressed as follows:

€pjðtÞ þmr €pjðt� DÞ þ 2xjoj _pjðtÞ þ o2
j pjðtÞ ¼ �

1

acm
mr €ppsj

ðtÞ, (22)

where ppsj
ðtÞ is the modal displacement of the pedestrian centre of mass on a stationary pavement, and mr is

the mass ratio, given by

mr ¼ acml
Mpj

Msj

. (23)

Neglecting the contribution of the right-hand member of Eq. (22) owing to the system linearity, the analysis
of stability permits one to deduce the following limit criterion:

x2j 4
1

4
2þ

O
oj

� �2

ðm2
r � 1Þ �

oj

O

� �2" #
. (24)

The worst condition for the system (i.e. the highest limit damping) happens when

O
oj

� �2

¼
1

1�m2
r

x2j 4
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

r

q� �
. (25)

In case of small mass ratio, Eq. (25) can be written as

O
oj

¼ 1þ
m2

r

4
xj4

mr

2
, (26)

leading to the stability criterion:

Mpj

Msj

o
2xj

acml
. (27)

Due to the particular force model assumed, this method can be rightly applied when the synchronization
between pedestrian and footbridge motions occurs, that is for bridges with a natural frequency around 1Hz,
since the pedestrian mass must able to follow, although out-of-phase, bridge oscillations (and pedestrian
lateral vibrations have to fall in the range 0.8–1.2Hz [1]).

2.2.3. Internal resonance

Fujino et al. [13] studied both from an experimental and analytical point of view the model of a cable-stayed
bridge characterized by vibration modes in an integer frequency ratio 2:1:1 (first vertical girder mode, first
lateral girder mode and first symmetric in-plane cable mode), observing that auto-parametric resonance could
be achieved. They observed that the T-Bridge was characterized by such a frequency ratio but, from
experimental measurements on the bridge [3], they found that lateral displacements were not correlated with
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vertical displacements, so that large vibration amplitudes could not be explained by the auto-parametric
resonance.

Blekherman [7] also considers nonlinear auto-parametric resonance as a reason for excessive lateral
vibrations induced by walking pedestrians on bridges with an integer ratio between vertical and lateral mode
frequencies, when the vertically excited mode is close to direct resonance conditions concerning the loading
(i.e. close to 2Hz). He proposes a physical model, not directly related to footbridges, made up of an elastic
pendulum of variable length, leading to a classic parametrically excited system. He states that swaying of
pedestrian bridges can be treated as a two-step process: the first step consists of the achievement of a jump
phenomenon, which is possible if a load parameter (the vertical load) passes through a critical value; then the
second step is the process of interaction between applied forces and the lateral mode of vibration.

3. The proposed excitation mechanism: model and solution

Forces exerted by pedestrians are essentially due to the motion of their centre of mass [18]. In case of a stationary
pavement, the motion of the pedestrian centre of mass is almost harmonic [19] and, thus, also the interactive force
is harmonic. In case of lateral oscillations of the platform, the motion of the centre of mass, and then the force
exerted on the pavement, necessarily depends on the motion of the pavement itself. Tests carried out on
harmonically moving platforms [4,20] showed a magnification effect of the force exerted by the pedestrians when
the motion of the platform is almost in resonance with the walking frequency. To the best of the authors’
knowledge, tests carried out in case of generic motion of the platform are not available in the literature. In this
study, the force exerted by pedestrians on a moving footbridge is modelled by a harmonic formulation (Eq. (3)) in
which, however, the dependence of the dynamic loading factor on the deck motion amplitude is taken into account
(Eq. (5)). As observed above, the dynamic load relation (5) has been obtained from tests carried out on
harmonically moving platforms. Due to the current incompleteness of testing, it seems reasonable to generalize
these results to a footbridge characterized by a generic law of motion. This assumption appears at least justifiable
for structures which exhibit lateral natural frequencies around 1Hz in their spectrum (i.e. with one lateral mode
approximately in resonance with the main lateral walking frequency). The following expression is then considered:

f pðx; tÞ ¼ l½a0 þ a1qðx; tÞ�gmpðxÞcosðOtÞ. (28)

The proposed model is suitable to schematize groups of pedestrians, such as those usually adopted in dynamic
loading tests (e.g. London Millennium Footbridge [4] and Solferino bridge [6]). Moreover, it justifies the
experimental evidence that the increase in the bridge motion leads to an increase in the amplitude of the periodic
forces laterally exerted by a single pedestrian (e.g. from the typical Eurocode value of 70N as far as 300N [10]).

Substituting Eq. (28) into the equation of motion of the footbridge (Eq. (8)), the following equation is
obtained:

msðxÞ
q2qðx; tÞ

q2t
þ C

qqðx; tÞ

qt

� �
þL½qðx; tÞ� � la1gmpðxÞ cosðOtÞqðx; tÞ ¼ la0gmpðxÞcosðOtÞ. (29)

Applying the principal transformation (Eq. (9)) to Eq. (29), and assuming that the system is classically
damped and the pedestrian mass mp(x) is distributed proportionally to the structural mass ms(x), Eq. (29)
becomes

€pjðtÞ þ 2ojxj _pjðtÞ þ o2
j � gla1

Mpj

Msj

cos Ot

" #
pjðtÞ ¼

gla0
Msj

Z L

0

mpðxÞjjðxÞdx

" #
cos Ot. (30)

Let us introduce the following non-dimensional quantities:

y ¼
pj

L
; ~t ¼

1

2
Ot. (31)

Using the chain rule for differentiation (½d=dt� ¼ ½d=d~t� ½d~t=dt�) and multiplying both terms of Eq. (30) by
(4/O2L), Eq. (30) can be re-written as follows:

€yþ 2Z _yþ ½d� 2� cos 2~t�y ¼ k cos 2~t, (32)
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where Z, d, e, k are given by

Z ¼
2oj

O
xj d ¼

4o2
j

O2
� ¼

2gla1
O2

Mpj

Msj

k ¼
4gla0
O2Msj

L

Z L

0

mpðxÞjjðxÞdx. (33)

Since the pedestrians’ modal mass is usually small compared with the structural modal mass, the
parameter e is naturally small; moreover, the damping parameter Z is also assumed small of the same
order as e:

Z ¼ �~Z. (34)

Substituting Eq. (34) into Eq. (32), it becomes

€yþ 2�~Z _yþ ½d� 2� cos 2~t�y ¼ k cos 2~t. (35)

Eq. (35) describes the parametric excitation of a single-degree-of-freedom system and is practically
coincident to the classic Mathieu equation (e.g. [14,15]). Depending on the values of the parameters, the
solution of Eq. (35) can be stable or unstable. The transition curves separate the regions of stability from those
of instability in the space of parameters (d, e, Z); along these curves the solution is periodic with period p or 2p.
Such transition curves can be analytically obtained using perturbation methods, among which the method of
strained parameters [14]. An alternative method, based on the Floquet theory, has been recently proposed by
Seyranian and Mailybaev [21], to obtain a first-order approximation of the instability domain of oscillatory
systems with small viscous damping and small periodic parametric excitation.

Without any loss of generality working in the elastic linear field, the problem of the free vibrations is
considered since the external forces do not affect the stability of the system. Let us expand the solution y and d
in powers of e:

d ¼ d0 þ �d1 þ �2d2 þ � � � ,

y ¼ y0 þ �y1 þ �
2y2 þ � � � . ð36Þ

Substituting Eq. (36) into Eq. (35) and equating the coefficient of each power of e, the following perturbation
equations are obtained:

order �0 €y0 þ d0y0 ¼ 0, (37)

order �1 €y1 þ d0y1 ¼ �2~Z _y0 � d1y0 þ 2y0 cos 2~t, (38)

order �2 €y2 þ d0y2 ¼ �2~Z _y1 � d1y1 � d2y0 � 2y1 cos 2~t. (39)

The general solution of Eq. (37) is [14,15]:

y0 ¼ a cos
ffiffiffiffiffi
d0

p
~tþ b sin

ffiffiffiffiffi
d0

p
~t. (40)

Let us consider the principal resonance condition, imposing d0 ¼ 1. Substituting Eq. (40) into Eq. (38) with
d0 ¼ 1, and eliminating the terms that produce a secular term in y1 demands that

d1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4~Z2

q
. (41)

Substituting Eq. (41) into Eq. (36), one obtains:

d ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4Z2

p
. (42)

Eq. (42) can be solved with respect to e in order to obtain the transition curve to the first-order
approximation:

�lim ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 1Þ2 þ 4Z2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 1Þ2 þ 4x2j d

q
. (43)
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The y1 solution is derived substituting Eq. (40) into Eq. (38). Substituting y1 into Eq. (39) and eliminating
the terms that produce a secular term in y2 demands that

d2 ¼ �
1

8
. (44)

Substituting Eqs. (41) and (44) into Eq. (36), one obtains:

d ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4Z2

p
�
�2

8
. (45)

Eq. (45) can be solved with respect to e to define the transition curve to the second-order approximation:

�lim ¼ 2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4Z2 � 8dþ 24

pq
¼ 2

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4x2j d� 8dþ 24

qr
. (46)

Let us now consider the secondary resonance condition, imposing d0 ¼ 4. Substituting Eq. (40) into Eq. (38)
with d0 ¼ 4 gives

€y1 þ 4y1 ¼ sinð2tÞð4~Za� d1bÞ þ cosð2tÞð�4~Zb� d1aÞ þ a cosð4tÞ þ aþ b sinð4tÞ. (47)

Eliminating the terms that produce a secular term in y1 demands that

16~Z2 þ d21 ¼ 0. (48)

Eq. (48) can never be satisfied; thus, no periodic solution is possible around the secondary resonance
conditions. The same result has been obtained by Seyranian and Mailybaev [21] using the Floquet theory. As
already observed in Refs. [15,21], it has been verified that the presence of a damping term of the same
magnitude order as the periodic parametric excitation stabilizes the system around the secondary resonance.
The secondary resonance is possible only assuming that the damping is smaller than the parametric excitation
term (i.e. of order e2) [15]; however, such a condition is not of technical interest, since it could be verified for
systems with very small unrealistic structural damping or in case of very great parametric excitation
(unrealistic pedestrian mass).

Fig. 3(a) shows the transition curves around the principal resonance at the first-order approximation
(Eq. (43)) (dashed lines), compared with the second-order approximation (Eq. (46)) (solid lines),
corresponding to xj ¼ 0.005. It is worth observing that the transition from stable to unstable conditions is
highly influenced by the value of d: the limit value of e rapidly increases when d deviates from the unity value.
From a comparison between the first- and the second-order approximations, it can be deduced that the two
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Fig. 3. (a) First- (– –) and second- (—) order transition curves for x ¼ 0.005 and (b) first-order transition curve for different values of
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approximations are almost coincident for any value of d. Fig. 3(b) shows the variation of the first-order
transition curve with the damping ratio (xj ¼ 0.005 solid lines, xj ¼ 0.01 dashed lines, xj ¼ 0.015 dash–dotted
lines, xj ¼ 0.02 dotted lines). The transition curve is highly influenced by the damping ratio, especially for d
close to 1. For d deviating from unity, the influence of such a parameter on the stability limit is less sensitive.

In order to test the precision of the analytical transition curves, numerical simulations have been carried out
and the Mathieu equation (Eq. (32)) has been solved by the central finite difference method for various values
of the parameters, corresponding to stable and unstable situations.

Fig. 4 shows the time histories of the free non-dimensional response y(t) assuming x ¼ 0.007 and d ¼ 1, due
to the initial conditions y0 ¼ 0.01, _y0 ¼ 0 and e ¼ 0.8 elim (Fig. 4a), e ¼ elim (Fig. 4b) and e ¼ 1.2 elim (Fig. 4c),
being elim ¼ 0.014. The numerical simulations confirm the stability conditions defined by the transition curves:
for eo elim (Fig. 4a) the system is stable and the response tends to zero; e ¼ elim (Fig. 4b) corresponds to the
transition between stability and instability and the solution is periodic; for e4elim (Fig. 4c) the system is
unstable and the response tends to grow without limits (oscillatory divergence).

Fig. 5 shows the time histories of the response corresponding to d ¼ 1 and e ¼ 1.2 elim for different values of
the damping: Figs. 5a–c correspond to x ¼ 0.005 (elim ¼ 0.01), x ¼ 0.007 (elim ¼ 0.014), and x ¼ 0.01
(elim ¼ 0.02), respectively. It can be observed that the rate of increase of the response depends on the damping:
in particular, the response increases much more rapidly in case of high damping (Fig. 5c). This fact can be
explained observing that, in case of high damping, the limit parametric stiffness leading to instability is much
greater than in case of low damping; thus, it affects the equations of motion in a stronger way.

4. Discussion of technical aspects

The transition curves can be interpreted from a technical point of view taking into account that the
parameter e is proportional to the ratio between the modal mass of the synchronized pedestrians and the
structural modal mass, while the parameter d is a function of the ratio between the natural frequency of the
footbridge and the pedestrians’ lateral walking frequency (Eq. (33)). In particular, it is worth noting that the e
parameter hardly reaches values greater than 0.1 (see Fig. 3). Thus, only that part of the transition curves
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corresponding to eo0.1 is of technical interest: this region, corresponds to values of d in the interval (0.9–1.1).
Therefore, the instability mechanism analyzed here is of technical interest only for footbridges with lateral
frequencies very close to the principal resonance condition, corresponding to oj ¼ O/2 (O being in the range
0.8–1.2Hz [1]) and, thus, natural frequencies nj around 0.5Hz. Moreover, since the first- and second-order
approximations of the transition curves almost coincide, the first-order approximation can be adopted
(Eq. (43)). The limit condition can be written as a function of the structural damping, the mass ratio and the
frequency ratio as follows:

Mpj

Msj

o
O2

2gla1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
o2

j

O2
� 1

 !2

þ 16
o2

j

O2
x2j

vuut . (49)

The worst condition (the minimum in the transition curve) occurs when the frequency of the pedestrian
motion is exactly double the structural natural frequency, O ¼ 2oj; in this case, the stability criterion is given
by

Mpj

Msj

o
4o2

j

gla1
xj. (50)

Assuming oj ¼ p (i.e. setting the lateral walking frequency to the mean value, 1Hz) and a1 ¼ 2 (see
Section 2.1, Fig. 2), Eq. (50) becomes

Mpj

Msj

o
2p2

gl
xj (51)

or, alternatively, it can express the minimum value of damping coefficient to avoid instability conditions:

xj4
lg

2p2
Mpj

Msj

, (52)
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where the percentage of synchronized pedestrians l typically assumes values in the range (0.2–0.4) [3,9]. In case
of uniform structural and pedestrian mass distribution, the ratio between the modal pedestrian and structural
masses, Mpj

=Msj
in Eqs. (49)–(52), can be replaced by the ratio between the people and footbridge per-unit-

length masses, mp/ms.
From the analysis of Eqs. (51) and (52) it can be deduced that footbridges more prone to the analyzed

unstable mechanism are light (small ms), lowly damped (small x) in crowded conditions (great mp). The
stability criterion expressed by Eq. (51) is comparable with analogous formulae of the literature, in particular
with Roberts’ (Eq. (19)) and Newland’s (Eq. (27)) expressions. A formal comparison highlights that the
present proposal (Eq. (51)) is more conservative than the ones given by Newland (Eq. (27)) and by Roberts
(Eq. (19)). On the contrary, the formulation by Dallard et al. (Eq. (15)) seems hardly comparable with the
previous ones since it is deeply linked to the experimental measurements on the London Millennium
Footbridge, and cannot be directly applied to other bridges.

However, it should be noted that the three criteria, (19), (27) and (51), admit different application fields
according to frequency values and oscillation shapes of the footbridge. The mechanisms analyzed by Roberts
[10–12] and Newland [9] appear possible for footbridges with the smallest lateral frequency around 1Hz
(certainly not lower than 0.7Hz; see, e.g. trials on Solferino footbridge [6]); in these cases the criterion (51)
proposed in this paper cannot be applied. On the contrary, if the footbridge is very flexible (with a first lateral
frequency around 0.5Hz) the mechanism of parametric excitation can occur and the criterion (51) becomes
generally more urgent with regard to the others. In these cases, indeed, the contemporary presence of higher
lateral modes of frequency around 1Hz is very probable (e.g. it happens for the London Millennium
Footbridge), even if they show different modal shapes and different modal masses (e.g. skew-symmetric rather
than symmetric, with the application of the synchronized load on a portion of the structure). So, in case of
very flexible footbridges, both the dynamic interaction and the parametric excitation mechanisms could be
activated, and the application of the distinct stability criteria must be conducted using different values of the
involved parameters.

5. A real case study: the London Millennium Footbridge

During the opening day, a maximum crowd density of between 1.3 and 1.5 persons/m2 crossed the London
Millennium Footbridge [4]. Unexpected excessive lateral vibrations of the bridge occurred on the central span,
when it was occupied by about 200 people, at frequencies just around 0.5 and 1Hz, corresponding to the first
symmetric (n1 ¼ 0.48Hz, Ms1 ¼ 130 t) and the second skew-symmetric (n2 ¼ 0.95Hz, Ms2 ¼ 150 t) lateral
mode, respectively [5]. The oscillation amplitude of the central span has been visually estimated as 70mm, and
the maximum lateral acceleration experienced on the bridge was between 200 and 250mg [4].

In this section, an attempt is made to explain the swaying motion of the London Millennium Bridge
adopting the excitation mechanisms proposed in the literature (Section 2) and the parametric excitation
mechanism proposed in this paper (Section 3); finally, the results obtained adopting the proposed model are
compared with experimental observations.

5.1. Direct resonance

If pedestrians are assumed to walk with a lateral frequency around 1Hz, the direct resonance can be achieved
with reference to the second mode of vibration (n2 ¼ 0.95Hz). However, since the modal shape of such a mode is
skew-symmetric, the modal force is zero assuming a uniform pedestrian distribution. The only possibility to have
a non-zero modal force is to assume that synchronized pedestrians are not uniformly distributed. In such a case,
the response of the bridge would be harmonic with the sole component at n2 ¼ 0.95Hz, whereas the frequency
component corresponding to the first mode of vibration cannot be motivated in linear dynamics. It is almost
impossible to assume that pedestrians walked so slowly as to directly excite the first mode of vibration
(n1 ¼ 0.48Hz). Thus, direct resonance is not able to reproduce the experimental evidence that both the first and
the second natural frequencies occur in the Millennium Bridge oscillations.

Dallard et al. [5] made a remark that the mode at 0.48Hz might have been excited due to slightly
meandering path of people who were instinctively changing direction slightly every 3–4 footfalls.
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5.2. Dynamic interaction

The model proposed by Dallard et al. [4] reproduces the limit stability condition since the parameter k has been
defined by back analyses of the tests on the Millennium Footbridge itself. However, such a model is not able to
reproduce the physical evidence that two harmonic components are experimentally identified in the response.

The mechanisms analyzed by Roberts [10] and Newland [9] could be appropriate to model the
synchronization between pedestrians and the second skew-symmetric mode of vibration of the bridge,
concerning Newland’s model a not uniform distribution of synchronized pedestrians on the bridge span
should be used. Results obtained with regard to the pedestrian limit number are consistent with the
experimental crowd densities but the only physical explanation for oscillations on the first symmetric mode is
to assume that pedestrians took two steps directed slightly to the right followed by two steps directed slightly
to the left, giving rise to a force at the frequency of the first mode of vibration.

5.3. Internal resonance

The third vertical mode (n3 ¼ 1.89Hz) and the second lateral mode (n2 ¼ 0.95Hz) of the Millennium Bridge
satisfy the necessary condition for internal resonance. However, the analysis of vertical forces and lateral
oscillations of the bridge showed no correlation between such quantities [4]. Thus, internal resonance is not
appropriate to explain lateral sway of the bridge.

5.4. Parametric excitation

In this section, the proposed parametric excitation mechanism is applied to the case study of the London
Millennium Footbridge.

Fig. 6 shows the limit pedestrian number Nlim ¼ mpL/mps in case of uniformly distributed pedestrians
along the central span (Eq. (49) with mp/ms in place of Mpj

=Msj
) as a function of the walking frequency n ¼ O/

2p, setting oj ¼ 2pn1 (n1 ¼ 0.48Hz), l ¼ 0.3 (mean value of synchronized pedestrian percentage),
ms ¼ 2000 kg/m, mps ¼ 70 kg, a1 ¼ 2m�1, for three values of the damping ratio x ¼ 0.005 (solid line), 0.007
(dashed line), 0.01 (dash–dotted line). The worst condition (minimum limit number of pedestrians) obviously
occurs when pedestrians walk with a lateral frequency n ¼ 0.96Hz, corresponding to exactly twice the natural
frequency n1; in such a case, the number of uniformly distributed pedestrians which causes instability is
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Nlim ¼ 127, 178, 254, respectively, for the three damping conditions. The limit value of pedestrians
corresponding to the measured damping ratio (x ¼ 0.007) is Nlim ¼ 178, consistent with experimental
observations.

The second lateral mode of vibration of the central span of the bridge is assumed exactly skew-symmetric
(i.e. j2(L/2) ¼ 0), thus the bridge deck mid-span response is only associated with the first mode of vibration.
The forced equation of motion of the first principal component (Eq. (30)) is numerically solved, assuming a
sinusoidal shape for the first mode of vibration (i.e. j1(x) ¼ sin(px/L)) and setting a0 ¼ 0.04, a1 ¼ 2m�1,
l ¼ 0.3, oj ¼ o1 ¼ 2pn1, ms ¼ 2000 kg/m, x ¼ 0.007 (measured value of the structural damping ratio).
The number of pedestrians crossing the footbridge is considered variable, with a lateral walking frequency
exactly twice the first natural frequency of the bridge n1 (i.e. O ¼ 2o1). The deck displacement at the central
mid-span is finally evaluated taking into account the sole first mode of vibration (N̄ ¼ 1 in the principal
transformation (9)).

Fig. 7 shows the time histories of the bridge deck displacements at the central mid-span, together with their
Fourier transforms, assuming x ¼ 0.007, for a variable number of pedestrians crossing the bridge (Np ¼ 50,
180, 250 in Fig. 7a–c, respectively). When a small number of pedestrians crosses the bridge, the effect of
parametric excitation is almost negligible and the system response is mainly at the excitation frequency (the
Fourier transform of the response shows only one significant spike at the excitation frequency n ¼ 0.97Hz,
Fig. 7a). When the number of pedestrians reaches the limit value corresponding to the selected damping
coefficient, parametric excitation occurs and the response of the system shows two harmonic components
(the Fourier transform of the response has two comparable spikes, respectively at n ¼ 0.97Hz and
n1 ¼ 0.48Hz, the frequency of the first lateral mode of vibration, Fig. 7b). When the number of pedestrians
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exceeds the stability limit, the response is no longer periodic but tends to diverge in an oscillatory way and
it is totally governed by parametric excitation: the Fourier transform has a dominant spike at n1 ¼ 0.48Hz
(Fig. 7c). Actually, when deck vibrations become excessive, pedestrians stop walking and the phenomenon is
naturally self-limiting.

Fig. 8 is an attempt to reproduce the experimental results obtained during the pedestrian loading tests
on the Millennium Bridge [5]: it shows the time history of the displacement (Fig. 8b) and of the acceleration
(Fig. 8c) of the bridge on increasing the number of pedestrians crossing the deck, from 50 up to 260 people
(Fig. 8a). It can be observed that, when the number of pedestrians exceeds 200 units, the deck oscillation
begins to increase and both displacements and accelerations reach values of the same order of magnitude as
those experimentally observed.

Therefore, the parametric excitation of the first lateral mode of vibration (n1 ¼ 0.48Hz) can explain the
excessive lateral sway of the London Millennium Footbridge at the deck mid-span. Since the Millennium Bridge
is characterized by a second skew-symmetric lateral mode of vibration with a natural frequency around 1Hz, also
direct resonance could be activated and could probably be responsible for bridge vibrations in other positions of
the deck, where the contribution of the second mode of vibration is significant. However, only a mechanism of
parametric excitation is able to motivate the significant excitation of the first lateral mode of vibration.

6. Conclusions and prospects

In this paper, a new excitation mechanism has been proposed to motivate the excessive lateral sway motion
caused by crowds walking across footbridges, based on a forcing model considering an amplitude-dependent
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dynamic loading factor. The footbridge is thus analyzed as a parametrically excited system and a stability limit
is identified, depending on the ratio between the structural and excitation frequencies, on the ratio of the
structural and pedestrian mass, and on the structural damping. Differently from the direct resonance and
internal resonance mechanisms, the parametric excitation mechanism produces an instability phenomenon,
whose critical conditions can be achieved for light, lowly damped footbridges, with a lateral natural frequency
around 0.5Hz, corresponding to a half of the lateral walking frequency. The application of the proposed
formulation to the case of the London Millennium Footbridge provides results in accordance with
experimental observations: when the pedestrian mass is greater than the deduced limit value, the amplitude of
motion tends to dramatically increase, in a way very similar to experimental measurements.

The domain of occurrence of the different crowd-induced mechanisms analyzed in this paper and, therefore,
the bounds of applicability of the proposed forcing model is worth discussing. When a footbridge is
sufficiently stiff in the lateral direction, that is its first lateral frequency is around 1Hz (e.g. the T-Bridge [3])
and certainly not lower than 0.7Hz (e.g. the Solferino Footbridge [6]), the dynamic interaction mechanisms in
resonant conditions appear predominant and the criterion proposed in this paper is not applicable. When a
footbridge is very flexible in the lateral direction, that is its first lateral frequency is around 0.5Hz (e.g. the
Millennium Bridge [4,5] and the Maple Valley Great Suspension Bridge, recently studied by Nakamura and
Kawasaki [22]), the proposed parametric excitation mechanism seems the only one able to lead to a predictive
criterion, producing both a reliable value of the pedestrian limit number and an interpretation of the response
frequency spectrum, without the need for back analyses on the real structure. In these cases, however, it is
probable that the footbridge exhibits lateral frequencies around 1Hz too, leading to a mixed resonant-
parametric excitation mechanism, as probably happened for the London Millennium Footbridge.

Even though the proposed mechanism is supported by the previously cited experimental evidence on a real
structure, the main limit of the current formulation is the effective reliability of the forcing model adopted
here, because of the incompleteness of the actual experimental measures concerning the interaction between
the human walking and the generic movement of the platform where the pedestrian motion occurs. Therefore,
the authors highlight the effective necessity of carrying out free field tests on flexible footbridges, recording
simultaneously the bridge response and the pedestrian motion, in order to provide reliable models of forces
induced by pedestrians on a moving footbridge and, thus, to definitely confirm the applicability of the
proposed forcing model.
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